

Issue 1 Sunday 18 January 2026

In this issue of Crop Action:

- [General: Preparing silos for harvest, Biosecurity update; black-grass](#)
- [Cereals: Fungicide withholding periods for grain and forage in cereals](#)
- [Herbage: Clover thrips, Fungicide use in ryegrass seed crops and straw trading, Determining seed moisture content in ryegrass seed crops, White clover seed crop desiccation](#)
- [Maize: Fall armyworm update](#)
- [Oilseed rape: Post harvest management](#)
- [Weather updates: Long-term weather update, FAR weather tool and soil moisture data](#)

Editor's note

Welcome to the first issue of Crop Action for 2026! Hopefully you found some time to get off farm for at least a little over the Christmas/New Year period.

Harvest is underway for many. As usual, FAR will be publishing harvest trial results, particularly for the Cultivar Performance Trials,(CPT). Keep an eye on FAR Weekly in the coming weeks as these results may inform decisions on autumn cultivar selections...autumn sowing will be upon us before we know it.

Chertsey and Lincoln research sites

Harvest is now underway at the Chertsey Arable Research Site. The dryland perennial ryegrass stem rust trial (cv. 'Colosseum') was successfully harvested in December. The irrigated trial was windrowed on 6 January and is awaiting harvest. Dryland white clover and dryland CPT wheat trials were harvested this week.

This season has been particularly challenging. An exceptionally wet winter, especially around the Lincoln area, resulted in waterlogged paddocks and restricted site access, including at the Kowhai Farm research site. These conditions were followed by periods of very high moisture demand during late spring, driven by hot, windy weather. Significant bird pressure at both Chertsey and Kowhai Farm also created additional challenges for several trials.

Despite these pressures, trials at research sites and on-farm generally performed well through the season. Disease pressure remained low, and good levels of sunshine during the grain-fill period supported strong crop development.

FAR trials were affected by hail over the Christmas New Year period. The Chertsey site received a lot of damage, which, as on thousands of hectares across Canterbury, varied by crop and growth stage. See details below.

Maize (V8 growth stage):

Fully emerged leaves shredded, some damage to emerging leaves within the whorl.

Wheat (CPT):

Dryland: Mature grains knocked from the heads.

Irrigated: Developing grains damaged, with a risk of secondary fungal infection. The full extent of yield impact is still being assessed.

White clover:

Dryland: Mature florets dislodged from flower heads.

Irrigated: Damage to stalks restricted nutrient flow to developing seed, yield loss TBC.

Perennial ryegrass:

Dryland: Increased seed shattering in mature seed heads.

Irrigated: Damage to individual spikelets limited seed fill.

Despite damage to several trials the research sites are still expected to deliver robust results. The season has provided valuable insights into crop resilience and management responses under highly variable climatic conditions.

Regional Updates

Southland

It's business as usual in the south for this time of year. A few paddocks of early barley are ready for harvest, while grass seed crops are getting close, but are still at least a week away from cutting. Ground conditions are pretty good with sun (and a little more rain in parts of Southland) welcome as harvest 2026 commences. I look forward to getting out on farm with Chris Smith and the combine team when they visit the south in early February. *Nicole Foote, FAR Regional Facilitator*

Mid Canterbury

A run of thunder and hail storms between Christmas and New Year caused partial, and in some cases total, crop losses in parts of the district, particularly south of the Rakaia.

Some paddocks of autumn-sown cereal crops and ryegrass have already been harvested around the district, with most growers now watching the forecast and hoping the sun stays out so the rest can be wrapped up when ready. Yields to date are tracking around average, although there is variability between farms depending on how well the irrigation kept up in the drier periods through November.

Clover crops are looking good; growers are keen to see a stretch of settled weather as further rainfall will only add vegetative growth. Blind seed disease is starting to show up in some crops across the district; however, where robust fungicide programmes have been in place, impacts appear limited so far. *Cindy Lowe, FAR Regional Facilitator*

Northern South Island

Irrigation is finishing up for autumn crops and heavier soils, while further rainfall will determine the requirements of some spring crops and those on lighter soils. Growers are concerned that yields in clover and late pea crops which are still flowering will be affected by the continued wet weather. These crops in particular would benefit from some dry days and sunshine. The damp weather is also seeing disease coming into wheat, but as it is too close to address this within withholding periods, it remains to be seen if disease levels will impact on yields.

As crop health programmes are completed, growers are spending time rogueing crops, with some spotting patches of ryegrass they suspect to be herbicide resistant. FAR offering free herbicide resistance testing, so if you have concerns about weeds which haven't responded to herbicide, you're encouraged to send in samples for testing. Find out how to send in a sample [here](#). Knowing what chemistry weeds are resistant to is an important step in developing a management plan.

There have been a few windrowers and headers out, starting on early grasses & dryland cereals, but for the most part harvest hasn't got underway. Reports are of average yields for these early crops. *Donna Lill, FAR Regional Facilitator*

South-west North Island

Taranaki

Maize crops are very hit-and-miss across the region, with some establishing poorly, especially those that were planted late or replanted. Many growers were impacted by severe cutworm and bird damage resulting in a lot of replants.

Manawatu/ Horowhenua

Growers are having a good season. Maize was well advanced by Christmas and has done well since, with many crops now at V9. The irrigated sand country needed quite a lot of water through December, but has held up well, but dryland sand country got quite dry through December. Some growers in Southern Manawatu and Horowhenua received significant wind damage in the recent storm, with later-planted maize being most affected. Pea harvest is finished and yields are above average. September-sown wheat and October-sown barley are now flowering.

Rangitikei

Maize plantings were a week or two behind normal but have had a favourable growing period and are looking good. The early-planted maize is flowering. However, growers report the worst year for cutworm in a long time meaning plant losses and an additional pass with insecticide. No major issues with slugs and Argentine stem weevil. Spray contractors struggled to keep up so some of the spray timings were sub-optimal. Barley and wheat crops are looking good, with the T2 fungicide currently holding well. Green feeds were impacted before Christmas by diamond back moth infestations.

The region received good catch-up rain in December, with a further 25 mm over Christmas/ New Year, which has been welcomed by growers. It has been hot and windy since, so growers are holding out for some more rain soon. *Megan Cushnahan, FAR Regional Facilitator*

Eastern North Island

Hawkes Bay/ Wairarapa

Hawkes Bay has been on fan bake for some time and dryland grain crops that started well have failed to reach their potential. Winter grain crops harvested to date are down 1-2 t/ha on expected yield and the extremely hot weather did not help grain fill. Growers report they will still make some margin, but not as much as desired. Dryland peas have yielded satisfactorily considering the weather conditions. Later planted peas are performing the best. Irrigated maize, squash, beans, vegetables and sweetcorn are performing well.

Conditions are hot and dry in Wairarapa. Many growers received much needed rain at New Year, but conditions have been hot and windy since then and dryland maize and other crops are feeling the impact, with some late-planted maize senescing earlier than growers would like. Lots of grass has been harvested in the region, but dryland pastures are drying up quickly.

East Coast

Maize crops are looking good. Squash harvest has started well with some strong yields and quality. Wairoa has received two, much needed dumps of rains since the 27 December, but there will be some crop loss in Gisborne, due to the very heavy rain. *Megan Cushnahan, FAR Regional Facilitator*

Waikato

Waikato maize crops are looking great thanks to regular rainfall through December (and missing the worst of the storms that hit the rest of the country. Tasselling is well advanced with some high temperatures encouraging this stage along.

Growers are on the lookout for northern leaf blight, risk for this disease is elevated by thunderstorm conditions which are forecast. (A FAR resource on this topic is available [here](#).) Fall armyworm (FAW) has been found in reasonable numbers across Waikato. Keep monitoring and talk to your rep or FAR staff if you think you have found FAW. Early identification and appropriate management can reduce the need for costly agchem treatments.

At the FAR trial site, the no-till maize plots appear more advanced than the cultivated ones. There is quite a bit of variation between the trial plots visually so it will be interesting to see yield results. *Rachel Mudge, FAR Regional Facilitator*

Northland

Earlier planted crops are generally looking good. FAW seems to be more prevalent in later-planted crops and the east coast has more of these. Parasitoid wasp numbers seem to be good, reducing the need for spraying, although some growers have made this choice. Later planted crops aren't flowering, so are more susceptible to damage if FAW takes out the whorl. If you find FAW in your maize, talk to your rep as soon as possible. *Rachel Mudge, FAR Regional Facilitator*

Crop management

General

Preparing silos for harvest

Harvest is now underway and silos may be filling up. Others may be empty and awaiting crops still to be harvested. Before filling, to prevent a potential infestation, silos and surround areas should be thoroughly cleaned. This can be done by:

- Sweeping the base of the silo.
- High-pressure wash of all surfaces inside the silo with water.
- Spray herbicide around the base of the silo, to remove habitats where insects could thrive.
- Ensure offal from the silo is dumped well away from the silo, or bury/burn it.

- Spraying with insecticide should be the last defence mechanism to prevent an infestation. However, spraying the silo pre-filling can be beneficial to remove any insects that are hiding in cracks or hard to reach places in the silo.
- Maintain clean storage premises with occasional residual spraying of critical areas (around the door and the base of the silo).

For further information see:

[Cereal update 210 Understanding stored grain pests](#) or Chapter 5 of the updated edition of [The storage and drying of grain and herbage seeds](#).

The drying and storage of grain and herbage seeds

Editors John Hampton and Anna Heslop

Biosecurity update; black-grass

Black-grass (*Alopecurus myosuroides*) is a high-risk invasive grass weed in temperate cropping systems. Overseas, it has reduced yields, disrupted rotations, and developed herbicide resistance. Incursions in 2021 and 2025 are considered to have been contained, although surveillance of all sites involved ongoing. However, vigilance is still required – report any grass weeds that have seed heads above the canopy that you can't identify or you think might be black-grass. Further information is available on the [Environment Canterbury website](#).

Cereals

Fungicide withholding periods for grain and forage in cereals

If you are using fungicides at this time of year it is essential to check that the withholding period fits your intended harvest time (whether it is for a silage or grain crop). With standard crop management, there should be little risk of harvesting within the withholding periods listed for autumn sown crops. However, harvesting at the early end of the silage window could put some crops at risk of not meeting the withholding periods from a GS 39-49 application of certain fungicides. Keep a record of application dates and calculate safe harvest times. Spring sown crops will generally have a shorter window from GS 39 to harvest, so extra care should be taken to ensure withholding periods are met. Withholding periods for common fungicide products used for cereal silage and grain production are listed below.

Table 2. Withholding periods for common fungicide products used for cereal silage and grain production.

Product	Active Ingredients	Withholding period for forage/silage	Withholding period for grain
Acanto®	Picoxystrobin	28 days	35 days
Adexar®	Fluxapyroxad + Epoxiconazole	28 days	42 days
Amistar®	Azoxystrobin	28 days	35 days
Aviator Xpro®	Bixafen + Prothioconazole	42 days	56 days
Caley® Iblon®	Isoflucpyram + Prothioconazole	42 days (Barley); 28 days (Wheat)	56 days (Barley); 42 days (Wheat)
Comet®	Pyraclostrobin	28 days	56 days
Delaro®	Trifloxystrobin + Prothioconazole	42 days	56 days

EstatusTM Plus	Benzovindiflupyr	28 days (Wheat only)	42 days (Wheat only)
Folicur® 430SC	Tebuconazole	28 days	49 days
Opus®	Epoxiconazole	42 days	42 days
Phoenix®	Folpet	28 days	None when used as directed
Proline®	Prothioconazole	42 days	56 days
Prosaro®	Prothioconazole + Tebuconazole	42 days	56 days
Protiva®	Trifloxystrobin	28 days	49 days
Revystar®	Mefenitrifluconazole + Fluxapyroxad	28 days	42 days
QuestarTM	fenpicoxamid	28 days	None when used as directed
Seguris Flexi®	Isopyrazam	28 days	42 days
Vimoy® Iblon®	Isoflucpyram	42 days (Barley); 28 days (Wheat)	56 days (Barley); 42 days (Wheat)

Herbage

Clover thrips

FAR has received reports of high numbers of thrips in both red and white clover seed crops in Canterbury. To ascertain whether numbers are high enough to cause yield damage pick ten intact seed heads and shake each one over a piece of white paper. The dark-coloured thrips will fall out and should be easily visible. An average of more than five thrips per flower head is considered enough to warrant action. There are a number of insecticide options, such as Mavrik® (tau-fluvalinate, Group 3), but other, more bee-friendly products exist. Check with your agricultural rep or other rural professional for advice and always read the label before spraying.

Fungicide use in ryegrass seed crops and straw trading

Withholding periods should also be kept in mind when using fungicides to control of stem rust (*Puccinia graminis* subsp. *graminicola*) in ryegrass seed crops. This is of particular importance in crops where the residue (or seed/grain) may be fed to animal and where feed declaration form is required.

As harvest approaches, carefully consider the following options:

1. For all fungicide products, harvest is considered as cutting, not threshing.
2. Do not apply a fungicide that contravenes the specified withholding period (see Table 1). This may involve a yield loss if the disease is present.
3. If a fungicide is applied that breaches withholding period requirements, either burn or incorporate all residue to ensure it does not end up being eaten by livestock.
4. Undertake a fungicide residue test (your cost) to ensure residues are at or below the maximum residue limit (MRL) for the product.
5. Check individual labels of generic formulations of common fungicide brands to make sure the same label conditions apply. If doubt, contact your agrichemical supplier or manufacturer directly.

Table 1. Fungicide withholding periods for products approved for use on ryegrass seed crops in New Zealand. Note that, for withholding periods, “seed” means that the seed crop should not be harvested within the period. “Grazing” means that stock cannot re-enter the paddock until after the period has

ended, as long as straw has been removed. “Use in combination” means that it must be mixed with another, non-cross resistant fungicide recommended for control of the same disease.

Product	Active Ingredient	Resistance Management Group	Withholding period	Considerations
Opus®	Epoxiconazole	3	Seed – 21 days Grazing – 35 days	None
Proline®	Prothioconazole	3	Seed – 14 days Grazing – 35 days	None
Comet®	Pyraclostrobin	11	Grazing – 35 days	None
Amistar®	Azoxystrobin	11	Seed – 35 days Grazing – 28 days	None
Seguris Flexi®	Isopyrazam	7	14 days	Max. 2 applications of any Group 7 fungicide per season. Use in combination.
Elatus™ Plus	Benzovindiflupyr	7	Seed – 14 days Grazing – 28 days	Max. 2 applications of any Group 7 fungicide per season. Use in combination.
Vimoy® Iblon®	Isoflucypram	7	Grazing – 49 days Straw/stubble – 35 days	Max. 2 applications of any Group 7 fungicide per season. Use in combination. Apply up to GS61.

Determining seed moisture content in ryegrass seed crops

Ryegrass seed harvest is underway for some cultivars now, with later varieties being cut this week for some growers. The determination of ryegrass seed moisture content (SMC) plays an important role in:

- Deciding if the seed is mature enough to harvest, and;
- Determining if seed is safe for storage.

FAR has produced a document on this topic for growers, outlining current best practice as well as some of the science involved. It can be found [here](#).

Another related resource, recently released by FAR, is an Arable Update with information on minimising seed yield losses due to seed shattering. Getting your harvest window right can be a challenge in perennial ryegrass seed crops, so it's worth thinking about how to maximise the amount of saleable seed. The best seed yields in FAR trials have been achieved between seed moisture content (SMC) of 55% and 41%. The full Arable Update can be read [here](#).

For information on seed management immediately post-harvest, see Section 1.8 of the updated edition of [The storage and drying of grain and herbage seeds](#)

White clover seed crop desiccation

The time is approaching where growers will be considering their options for pre-harvest desiccation of white clover seed crops. A summary of recent FAR research on this topic can be found [here](#). The choice of desiccant may be affected by whether or not the crop will be used for stock grazing post-harvest.

Maize

Fall armyworm (FAW) update

FAW has been detected at multiple sites across the North Island, with unconfirmed reports from Tasman and Westland. Most detections remain at low population levels. Frequent crop scouting is recommended. This season has seen **late plantings and replanting** due to spring weather conditions. These crops are at higher risk because they align with the larger second-generation populations now developing. If you have concerns, contact your farm advisor and for the latest information, visit www.fallarmyworm.nz.

Oilseed rape

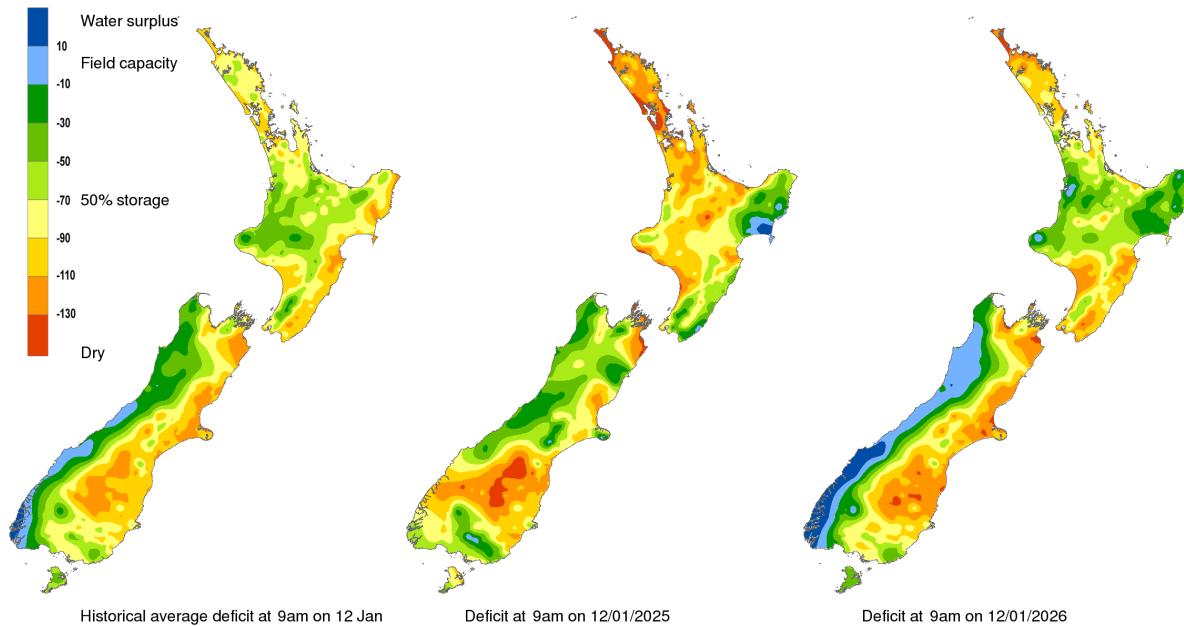
Post-harvest management

Advice from PureOil NZ is that management of both the harvested seed and the paddock requires a little more care than some other crops. Some post-harvest considerations are:

- Take extra care when storing oilseed rape. Its high oil content makes controlling temperature and moisture more challenging. Aim to cool seed to less than 15°C.
- For safe storage, seed moisture should be below 8-9% for short term storage only and beyond 3–5 months 7.0–7.5% with grain temperatures maintained below 15°C.
- Be aware of the problems that oilseed rape volunteers can have in following crops, such as increased competition and reduced yield.
- Reduce the chances of shed oilseeds developing secondary dormancy by delaying tillage by 2-3 weeks post-harvest where practical.

Weather Updates

Long-term weather outlook


The warm(?) summer continues, with above-average temperatures expected across the country, particularly at night. The South Island's east coast may tend more toward the historical average temperatures than the rest of New Zealand. The North Island can expect a predominance of easterly wind flows through January and into February, while the South Island is expected to be more settled. The risk of tropical cyclones in vulnerable areas is listed as normal to elevated. January – March rainfall totals are most likely to be above normal for the north and east of the North Island, about equally likely to be near normal or above normal for the east of the South Island and the west of the North Island, near normal or below normal for the north of the South Island, with below normal rainfall most likely in the west of the South Island.

FAR weather tool

The FAR online weather tool is a great way to track weather patterns and to compare the current season's conditions with those of previous years. There are also a number of tools available to help with predicting disease and pest pressure. You can check it out [here](#). Click on the link and select the weather station closest to you from the drop-down box at the top right of the screen. Please contact us if you have any queries about the tool, or suggestions on how to make it better.

Soil moisture data: see more from NIWA [here](#).

Soil moisture deficit (mm) at 9am on 12/01/2026

Contact the editor

Ben Harvey

Ben.Harvey@far.org.nz

Alternatively, email one of our research leaders:

Cereals - [Jo Drummond](#)

Maize – [Rene Van Tilburg](#)

NOTE: This publication is copyright to the Foundation for Arable Research ("FAR") and may not be reproduced or copied in any form whatsoever without FAR's written permission. This publication is intended to provide accurate and adequate information relating to the subject matters contained in it and is based on information current at the time of publication. Information contained in this publication is general in nature and not intended as a substitute for specific professional advice on any matter and should not be relied upon for that purpose.

No endorsement of named products is intended nor is any criticism of another alternative, but unnamed products. It has been prepared and made available to all persons and entities strictly on the basis that FAR, its researchers and authors are fully excluded from any liability for damages arising out of any reliance in part or in full upon any of the information for any purpose.